Roles of the glyoxylate and methylcitrate cycles in sexual development and virulence in the cereal pathogen Gibberella zeae.
نویسندگان
چکیده
The glyoxylate and methylcitrate cycles are involved in the metabolism of two- or three-carbon compounds in fungi. To elucidate the role(s) of these pathways in Gibberella zeae, which causes head blight in cereal crops, we focused on the functions of G. zeae orthologs (GzICL1 and GzMCL1) of the genes that encode isocitrate lyase (ICL) and methylisocitrate lyase (MCL), respectively, key enzymes in each cycle. The deletion of GzICL1 (DeltaGzICL1) caused defects in growth on acetate and in perithecium (sexual fruiting body) formation but not in virulence on barley and wheat, indicating that GzICL1 acts as the ICL of the glyoxylate cycle and is essential for self-fertility in G. zeae. In contrast, the DeltaGzMCL1 strains failed to grow on propionate but exhibited no major changes in other traits, suggesting that GzMCL1 is required for the methylcitrate cycle in G. zeae. Interestingly, double deletion of both GzICL1 and GzMCL1 caused significantly reduced virulence on host plants, indicating that both GzICL1 and GzMCL1 have redundant functions for plant infection in G. zeae. Thus, both GzICL1 and GzMCL1 may play important roles in determining major mycological and pathological traits of G. zeae by participating in different metabolic pathways for the use of fatty acids.
منابع مشابه
A Putative Transcription Factor MYT2 Regulates Perithecium Size in the Ascomycete Gibberella zeae
The homothallic ascomycete fungus Gibberella zeae is a plant pathogen that is found worldwide, causing Fusarium head blight (FHB) in cereal crops and ear rot of maize. Ascospores formed in fruiting bodies (i.e., perithecia) are hypothesized to be the primary inocula for FHB disease. Perithecium development is a complex cellular differentiation process controlled by many developmentally regulate...
متن کاملA Putative Transcription Factor MYT1 Is Required for Female Fertility in the Ascomycete Gibberella zeae
Gibberella zeae is an important pathogen of major cereal crops. The fungus produces ascospores that forcibly discharge from mature fruiting bodies, which serve as the primary inocula for disease epidemics. In this study, we characterized an insertional mutant Z39P105 with a defect in sexual development and identified a gene encoding a putative transcription factor designated as MYT1. This gene ...
متن کاملHistidine kinase two-component response regulator proteins regulate reproductive development, virulence, and stress responses of the fungal cereal pathogens Cochliobolus heterostrophus and Gibberella zeae.
Histidine kinase (HK) phosphorelay signaling is a major mechanism by which fungi sense their environment. The maize pathogen Cochliobolus heterostrophus has 21 HK genes, 4 candidate response regulator (RR) genes (SSK1, SKN7, RIM15, REC1), and 1 gene (HPT1) encoding a histidine phosphotransfer domain protein. Because most HKs are expected to signal through RRs, these were chosen for deletion. Ex...
متن کاملReduced virulence of Gibberella zeae caused by disruption of a trichothecene toxin biosynthetic gene.
The production of trichothecene mycotoxins by some plant pathogenic species of Fusarium is thought to contribute to their virulence. Gibberella zeae (F. graminearum) is an important cereal pathogen that produces the trichothecene deoxynivalenol. To determine if trichothecene production contributes to the virulence of G. zeae, we generated trichothecene-deficient mutants of the fungus by gene di...
متن کاملFunctional analyses of heterotrimeric G protein Gα and Gβ subunits in Gibberella zeae
The homothallic ascomycete fungus Gibberella zeae (anamorph: Fusarium graminearum) is a major toxigenic plant pathogen that causes head blight disease on small-grain cereals. The fungus produces the mycotoxins deoxynivalenol (DON) and zearalenone (ZEA) in infected hosts, posing a threat to human and animal health. Despite its agricultural and toxicological importance, the molecular mechanisms u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Eukaryotic cell
دوره 8 8 شماره
صفحات -
تاریخ انتشار 2009